assignment1.do - Printed on 6/8/2018 11:09:24 AM

```
***** Preliminaries
2
    capture log close all // Closes any log if open //
3
 4
     cd "C:/Users/AN.4271/Dropbox/HHS 651/Assignments/Assignment 1/" /* Sets the Stata Working Directory (note the forward slashes.
5
      Stata will try to work with either forward or backwards slashes, but Windows-style back
 6
      slashes sometimes interfere with functionality, so forward slashes are preferred. */
7
8
     log using "assignmentlog", text replace /* Starts a text-type log file called
9
                            "assignmentllog" */
10
11
     *********
                                                             HHS 651: Assignment 1
12
     * * * * * * * * * * * * * * *
                                                             *****
                       Stata Solutions - Andrew Proctor
13
14
15
16
     ******** Data Manipulation
17
18
     **** Import Dataset CSV File
19
     import delimited using "prgswep1.csv", clear
20
21
     **** Ouestion 1: Describe Dataset
22
        describe, short
23
24
        /* Discussion: There are 4,469 observations (individuals) and 1,328
25
        variables in the dataset. */
26
27
28
     **** Question 2: Explanatory Variables
29
30
         **** 2a. Gender (gender r)
             *** Explore Gender Variable
31
32
             codebook gender r // View storage format of variable 'gender r' //
33
             *** Create a "Female" Indicator Variable
34
35
             gen female = (gender r == 2) if !missing(gender r)
36
                 /* For individuals whose gender is listed in gender r, assigns a
37
                value of 1 for female if gender is equal to 2, 1 if not. Missing
38
                values in gender r would also appear as missing in the female
39
                variable.*/
40
41
             tabulate female // Displays the freq/percent of each value of "female."
42
43
             /*
44
             Discussion: The variable "gender r" represents the gender listed
45
             for each variable. When the CSV file was read into Stata, the variable
             was interpreted as a 'numeric' type variable. 50.41% of observations
46
             are male, 49.59% female, and there are no missing observations.
47
48
             */
49
50
             *** Note: Another way to create the female indicator variable would be:
51
             // gen female alt = 0 if !missing(gender r)
```

```
assignment1.do - Printed on 6/8/2018 11:09:24 AM
```

```
52
              // replace female alt = 1 if ( gender r == 2 & !missing(gender r))
 53
              // tabulate female alt
 54
 55
          **** 2b. Years of Schooling (yrsqual)
 56
              *** Explore 'Years of Schooling' Variable
 57
              codebook yrsqual // View storage format of variable 'j q04a' //
 58
              tabulate yrsqual
 59
                  /* Since 'yrsqual' is a string-variable, only the first
 60
                  9 values are shown using the codebook command. Using tabulate, we
 61
                  see some of the observations have a missing value "D" - which means
 62
                  "Don't Know" according to the downloaded codebook. */
 63
 64
              ***** Format- Years of Schooling Variable
              replace yrsqual = ".d" if yrsqual == "D"
 65
 66
                  /* Since we need to format the variable as a numeric (quantitive)
 67
                  variable, we need to Stata to interpret the missing values
 68
                  correctly. Missing values in Stata are denoted my ".", where
 69
                  letters can follow the "." to indicate what type of missing data we
70
                  have. So we change "D" to ".d". */
 71
72
              destring(yrsqual), gen(yearsch)
73
                  /* Now, we need to Stata to convert the variable to numeric,
 74
                  by parsing the text (string) values as numbers. */
75
 76
              tabulate yearsch // Check to make sure no more missing values.
 77
78
              tabulate yearsch, missing /* Note: You can see missing values again in
 79
                                 tabulate by using option, ", missing" */
 80
81
              summarize yearsch // Produces basic descriptive statistics for 'age'
 82
 83
              /*
 84
              Discussion: The variable "yrsqual" is a derived measure of years
 85
              of schooling. The variable was stored in Stata as a "string" type of
 86
              variable (Why? Because some observations take on the non-numeric "D"
 87
              value). After converting the variable to numeric, we see the mean is
 88
              12.33, with std. dev. of 2.57, min of 6 and max of 20. There are 2
 89
              missing observations.
 90
              */
 91
 92
          **** 2c. Age (age r)
 93
              *** Explore Gender Variable
 94
              codebook age r // View storage format of variable 'gender r' //
 95
 96
              rename age r age /* Rename 'age r' to 'age' (not necessary,
 97
                          but makes regression more understandable later */
 98
99
              *** Generate 'Potential Experience' Variable
100
              gen potent exper = max(0,age - 19) /* Generates a 'Potential Experience"
101
                                   variable, equal to age - 19 for
102
                                   individuals who are at least 19,
```

```
103
                                   0 otherwise. */
104
105
              summarize potent exper, detail
106
107
              /*
108
              Discussion: The variable "age r" is a derived measure of age (in years)
109
              of the individual. The variable is stored in Stata as numeric and there
110
              are no missing observations. Using "summarize, detail" we see that the
111
              mean is 22.03 years and median (50th percentile) is 23 years.
112
              */
113
114
          **** 2d. Cognitive Ability (using pvpsl1)
115
              *** Explore 'Problem-solving scale score' Variable
116
              codebook pvpsl1 // View storage format of variable 'pvpsl1' //
117
118
              *** Generate Quantile of Cognitive Ability
119
              egen cogn rank = rank(pvpsl1) if !missing(pvpsl1) /* Rank of individuals'
120
                                           pvpsl1 if known. */
121
122
              egen count cogn = count(pvpsl1) if !missing(pvpsl1) /* Total number of
123
                                            nomissing observations
124
                                            for pvpsl1. */
125
126
              *** Percentile Rank
127
              gen cogn samp pctile = ((cogn rank -1) / (count cogn - 1)) * 100
128
129
              /*
130
              Discussion: The variable "pvpsl1" is a derived measure of an
131
              individuals' problem solving ability. The variable is stored as a
132
              numeric variable in Stata and there are 506 missing observations.
133
              */
134
135
      **** Question 3: Dependent Variable (Monthly Earnings Quintile)
136
          codebook monthlyincpr // View storage format of variable 'earnhrbonus' //
137
138
          *** Explore 'Employment Status'
139
          codebook monthlyincpr
140
141
          recode monthlyincpr (1 = 5) (2 = 17.5) (3 = 37.5) (4 = 62.5) (5 = 82.5) ///
142
              (6 = 95), gen(income pctile)
143
144
          * Alternate recode
145
      // gen income pctile = .
146
     // replace income pctile = 5 if (monthlyincpr == 1 & !missing(monthlyincpr))
     // replace income pctile = 17.5 if (monthlyincpr == 2 & !missing(monthlyincpr))
147
148
      // replace income pctile = 37.5 if (monthlyincpr == 3 & !missing(monthlyincpr))
     // replace income pctile = 62.5 if (monthlyincpr == 4 & !missing(monthlyincpr))
149
150
     // replace income pctile = 82.5 if (monthlyincpr == 5 & !missing(monthlyincpr))
151
     // replace income pctile = 95 if (monthlyincpr == 6 & !missing(monthlyincpr))
152
153
          replace income pctile = 0 if c d05 ==2 // Assign value of 0 for unemployed.
```

```
assignment1.do - Printed on 6/8/2018 11:09:24 AM
```

```
154
155
          drop if c d05 ==3 | c d05 == 4 // Drop if not in labor market or unknown.
156
157
          codebook income pctile // Check number of missing values of new var.
158
159
          /*
160
          Discussion: The number missing observations for "monthlyincpr" is 1,236.
161
          The number of missing observations for the revised measure is 122.
162
          */
163
164
      *** Ouestion 4: Regression Analysis
165
          *** 4a: Regress Income Rank on Cognitive Ability, Potential Experience, and Female Gender
          req income pctile cogn samp pctile potent exper i.female if ///
166
167
              ((age >= 30) \& (age <= 65))
168
              /*
169
                 Note: A more concise way to write the condition for age in this
170
                 interval is to use the command inrange as follows (I will use
171
                 inrange in the remainder of the solution).
172
173
                 Additionally, an alternative to use any 'if' condition in the
174
                 regression whatsoever would be the command:
175
                 "keep if inrange(age, 30,65)" but deleting observations outside this
176
                 range is both unnecessary and would make things more difficult if you
177
                 want to do further analysis on the full sample. */
178
179
180
          reg income pctile cogn samp pctile potent exper i.female if ///
181
              inrange(age, 30, 65)
182
183
              /*
              Discussion:
184
185
186
              The coefficient on cogn samp pctile implies that a one percentile
              increase in cognitive ability is estimated to shift an individual's percentile
187
188
              of earnings up by .3391429 (that is, .3391429 percentage points if
189
              percentile is expressed on a 0-1 scale).
190
191
              The coefficient on potent exper implies that a one year increase in
192
              potential experience is estimated to increase ones' percentile
193
              of earnings by .4132204 percentage points.
194
195
              The coefficient on female suggests that being female is estimated to
196
              increase the percentile of income by 12.38118 percentage points,
197
              compared to being a male.
198
199
              The constant estimate suggests that that the predicted percentile
200
              of income for a male (female = 0) with 0 years of potential experience
201
              and in the 0th percentile of cognitive ability is the 37th percentile.
202
              */
203
204
```

3		
205	* * *	4b: Add Exper ² and Age
206	req	income pctile cogn samp pctile c.potent exper##c.potent exper ///
207	2	i.female age if inrange(age, 30, 65)
208		
209	/*	
210	/	Discussion:
210		
212		Age: The age variable is omitted. If you look at the top of the
213		regression output, it notes that age is omitted because of
214		collinearity (Stata automatically detects perfect collinearity and drops
215		one of the collinear variables. Age here is a linear function of potential
216		experience and the constant, since age = potentexper + 19. This is a violation
217		of the MLR Assumption 3, which is simply "no perfect collinearity."
218		
219		Square of Potential Experience: The quadratic of experience is
220		negative and significant. This indicates that the benefit of an
221		additional year of experience is diminishing as the years of
222		experience one already has increases. Omission of a relevant quadratic
223		term like this is a common example of the mispecification of functional
224		form that is a violation of MLR Assumption 4 (zero conditional mean) for
225		estimating the true model.
226		estimating the trac model.
220		R^2 : The R^2 in the second model is higher than the first (0.1668 as
228		opposed to 0.1551), indicating adding the square of experience increases
229		the total amount of explained variation in income percentile. R^2 will
230		never decrease with the addition of subsequent variables. To see this,
231		note that R^2= 1 - (Sum of Squared Residuals / Total Sum of Squares).
232		Everything except the Sum of Squared Residuals are the same across
233		the two models, and since the second model contains all predictors from
234		the firt model, the sum of squared residuals will be no greater than in
235		the first model.
236		
237	*/	
238		
239	***	4c: Compare School Years vs Cognitive Ability
240	req	income pctile cogn samp pctile potent exper i.female if inrange(age, 30, 65)
241	sca	lar R2model4a = $e(r2 a)$ // Save R^2 as a scalar. (Also in reg output)
242		
243	req	income pctile yearsch potent exper i.female if inrange(age, 30, 65)
244		lar R2model4c = $e(r2 a)$ // Save R^2 as a scalar. (Also in reg output)
245		
246	dis	play R2model4a - R2model4c /* Displays difference in R^2 output. Note: For
247	aro]	the assignment, you could just compare them
248		from the regression output of each model. */
240		riom ene regression oucput of each moder. /
249 250	/*	
	· · · ·	
251	DIS	cussion:
252		
253		two models perform nearly identically, with the
254		ression model from 4(a) explaining .066432% more of the variation in
255	inc	ome quintiles.

```
256
257
          (Not graded) Potential Problems with Either Model:
258
          The two models preview common challenges in applied econometrics we will
259
         discuss in subsequent lectures. As you can see from the covariance matrix
260
         below, Cov(cogn samp pctile, yearsch) is not equal to zero, and both appear
261
         likely to affect incomes, implying omitted variable bias (i.e. a violation
262
         of MLR Assumption 4). One response would be to control for both cognitive
263
         ability and schooling. But this brings up an issue from Ch.3: endogeneity.
264
          The basic idea is that OLS is biased if you include explanatory variables
265
         that are caused by other variables in the model. If cognitive ability
266
         increases years of schooling, then years of schooling is endogenous when you
267
         both are in the model. Equally, one might imagine that, as individual gains
268
         more years of schooling, their cognitive ability increases. If this is
269
         true, cognitive ability is also endogenous to schooling (when two variables
270
          causally influence each other, this is a particular type of endogenity called
271
         simultaneity).
272
273
          */
274
275
         correlate cogn samp pctile yearsch, covariance
276
277
278
      **** Extra Ouestion for three person groups
279
280
          **** Question 5(a) Explore Structure of the variable "q q03h" - which is
281
          ** 'Skill use work - Numeracy - How often - Use advanced math or statistics'
282
          codebook g q03h
283
              /*
284
285
                  From looking at 'math use at work' with the codebook command, we
286
                  see that this variable takes on only 9 unique values, meaning that
287
                  all values are displayed by Codebook. From this, we can see right
288
                  away that we have the following 'Missing value' indicators that need
289
                  to be relabelled: 'D', 'N', 'R', and 'V'.
290
              */
291
292
          **** Question 5(b) Suitably reformat q q03h and provide the mean and
293
          **** standard deviation using the original vaue scheme.
294
295
              *** Recode Missing Values for g q03h
296
              replace q q03h = ".d" if q q03h=="D"
297
              replace q q03h = ".n" if q q03h=="N"
298
              replace q q03h = ".r" if q q03h=="R"
299
              replace g g03h = ".v" if g g03h=="V"
300
301
              *** Convert q q03h to a numeric variable by destringing
302
              destring g q03h, replace
303
304
              *** Produce summary statistics for q q03h using original coding of
305
              *** use frequencies
306
              summarize g q03h
```

assignment i.	do - 1 miled on 0/0/2010 11.03.24 Alvi
307	
308	/*
309	The mean (pre-transformation) of this variable is 1.287818 and the
310	standard deviation is 0.7269503.
311	*/
312	
313	**** Question 5(c) - Recode g q03h so that the values represents number of
314	*** times each month an individual uses advanced math or statistics at work
315	recode g q03h (1 = 0) (1 = 0.5) (3 = 2.5) (4 = 12) (5 = 20) ///
316	
	, gen(mathuseatwork)
317	
318	/*
319	This question highlights a common problem in applied work, which is
320	that survey data often uses an ordinal or interval approach to
321	asking retrospectative information. You as the researcher must then
322	decide how to make that interpretable numerically and justify it.
323	
324	In assigning values here myself, I assume that individuals work
325	4 5-day work weeks per month, for a total of 20 work days. So if an
326	individual reports they use math at work "everyday," (5 in the old
327	schema) that equates to 20 days per month.
328	
329	"Never" (1 in original coding) is straightforwardly represented as
330	0 times per month.
331	connect bet memory
332	For less than once a month (1), I code this as
333	as the midpoint between 0 and 1, i.e. 0.5 days per month.
334	as the mapping between o and i, i.e. o.s days per month.
335	For loss than once a weak but at losst area a month (2), this
336	For less than once a week but at least once a month (3), this
	should be less than four (i.e. at most 3) according to my
337	assumptions about a 4 week work month, but greater than 1. I again
338	use the midpoint of $(1,3)$, that is is 2.5 days per month.
339	
340	For at least once a week but not every day (4), this again should be
341	less than 20 but less than 4. So once again taking the midpoint of
342	(4,20), I code this as 12 days per month.
343	*/
344	
345	**** Summarize recoded math use at work variable
346	summarize mathuseatwork
347	
348	/*
349	The mean of the variable after transforming it to be more directly
350	interpretable is .7665993 and the standard deviation is 2.663051.
351	*/
352	
353	**** Question 5(d) - Regressions relating to a math use at work -> cognitive
354	**** ability -> income pathwawy.
355	4 1 1-
356	*** Question 5(d)(i) Regression of Cognitive Ability on math use at work
357	reg cogn samp pctile mathuseatwork if (inrange(age, 30, 65) & (c d05==1))

358		
359	***	Question 5(d)(ii)Regression of Earnings Pctile on Cognitive Ability
360		income pctile cogn samp pctile if (inrange(age, 30, 65) & (c d05==1))
361	2	
362	***	Question 5(d)(iii) Regression of Earnings Pctile on math use at work
363		income pctile mathuseatwork if (inrange(age, 30, 65) & (c d05==1))
364	reg	income_petite mathuseatwork if (infange(age, 50, 05) & (c_u05-1))
	/*	
365	/ ^	
366		Discussion:
367		
368		Regression 5(d)(i) suggests that for each additional day per month
369		that an individual uses advanced math at work, their percentile of
370		cognitive ability increases by 1.723182, which is statistically
371		significant (p-value < 0.01). It's not immediately required for
372		this question, but you may note that these estimates seem almost
373		implausibly high - as we will discuss further in 5(f).
374		
375		Regression 5(d)(ii), like analysis in question 4, suggests that
376		cognitive ability has a positive impact on earning, with a
377		1 percentile increase in positive ability estimated to increase
378		earnings percentile by 0.2753122, which is statistically
379		significant (p-value < 0.01). If both this relationship and the
380		relationship from 5(d)(i) are indeed correct, then math use at
381		work should have a direct effect on earnings percentile via this
382		pathway.
383		
384		Regression 5(d)(iii) estimates that cognitive ability does indeed
385		have an effect earnings percentile - in fact even larger than the
386		estimated effect through the cognitive ability - earnings pathway.
387		An increase in math use of work by once a month is estimated to
388		increase earnings percentile by 1.811131, which is statistically
389		significant (p-value < 0.01). Again, these results are implausibly
390		high - raising the spector of reverse cauality / endogeneity and
391		foreshadowing 5(f).
392	* /	
393	,	
394		
395	**** ()11	estion 5(e) - Regressions relating to an erroneous math use at work
396		years of schooling -> income pathway.
397		years or sensorring / rncome pachway.
	444	Question E(s)(i) Degression of years of scheeling on math use at work
398		Question 5(e)(i) Regression of years of schooling on math use at work
399	reg	<pre>yearsch mathuseatwork if (inrange(age, 30, 65) & (c_d05==1))</pre>
400		
401		Question 5(e)(i) Regression of income percentile on years of schooling
402	reg	<pre>income_pctile yearsch if (inrange(age, 30, 65) & (c_d05==1))</pre>
403		
404	/*	
405		Discussion:
406		
407		Regression 5(e)(i) estimates that math use at work
408		has a positive, statistically significant effect on years of

assignment1.do - Printed on 6/8/2018 11:09:24 AM

3	
409	schooling. Regression 5(e)(ii) then suggests that years
410	of schooling has a positive, statistically significant effect on
411	earnings percentile.
412	
413	This would point to a second causal pathway
414	for math use at work to effect earnings, but thinking about
415	regression 5(e)(i) - it doesn't make any sense under our assumptions.
416	If schooling strictly predates math use at work, then math use at
417	work cannot effect schooling. Instead, what we very likely have is
418	reverse causality - an individual's schooling instead affects their
419	math use at work. To see that a coefficient will be different from
420	zero when the true relationship runs in reverse of what is estimated,
421	consider the expression for Beta in terms of the sample correlation
422	and standard deviations:
423	
424	- For regression of y on x, the coefficient on x is:
425	beta x = Corr(x,y) * (StdDev x / StdDev y)
426	- And for the regression of x on y, the coefficient on y is:
427	beta y = Corr(x, y) * (StdDev y / StdDev x)
428	
429	Since the fraction (StdDev y / StdDev x) and it's inverse are always
430	strictly positive, then for nonzero Corr(x,y), running regression
431	in the 'wrong' direction (from y to x) will always yield a nonzero
432	coefficient with the same sign as the effect in the right direction
433	(from x to y).
434	
435	To demonstrate this argument, we run a regression interchanging
436	our dependent and independent variables in 5(e)(i).
437	
438	*/
439	
440	*** Demonstrating that regression can't tell us the direction of causality
441	reg mathuseatwork yearsch
442	
443	**** Question 5(f) - Inference from 5(d) in light of 5(e)
444	
445	/*
446	Discussion:
447	In 5(e), we see a rather stark case where causality cannot run in
448	the direction estimated by OLS, where math use at work is estimated
449	to increase years of schooling that predates work.
450	
451	This same concern is likely to extend to the relationship in 5(d).
452	Individuals with higher cognitive ability are probably more likely
453	to work in jobs with greater use of advanced math. In general,
454	there is likely to be the same issue of simultaneity in the
455	relationship between math use at work and congitive ability.
456	
457	Generally, this question highlights the difficulty in finding good
458	variables where there is no concern about OVB or reverse cauality.
459	

assignment1.do - Printed on 6/8/2018 11:09:24 AM

-	
460	Specifically, extending the logic from 5(d), it seems reasonable to
461	believe that higher paying jobs may often require greater use of
462	mathematics - irrespective of someone's aptitude or qualifications.
463	Hence, rather than higher math use 'causing' higher earnings, higher
464	earnings in these situations would be 'causing' more math use. But
465	since more math use might actually have the effect we originally
466	hypothesized - increasing congitive ability and thereby leading to
467	greater earnings - it's hard to disentangle these two effects.
468	
469	The potentially problematic nature of the relationship between math
470	use at work and cognitive abiltiy highlights another possible
471	challenge to the regression we have specified in 4(a): while
472	cognitive ability is likely to influence earnings, earnings may also
473	be affecting the measurement of cognitive ability through higher
474	math use at better paid jobs.
475	
476	Note: Questions 5 is meant to get at the questions of
477	reverse causality and simultaneity more in-depth. The timing of
478	effects problem in 5(e) is meant especially to highlight that
479	causality can't run in the direction specified. But it is also
480	possible to make a critique centered entirely around more typical
481	ommited variable bias (OVB). Students who don't address reverse
482	causality but instead make a clear and well-reasoned analysis to
483	this question using OVB will still earn full credit.
484	*/
485	****
486	log close _all
487	
A	