***** Preliminaries

```
capture log close _all // Closes any log if open //
```



```
    Stata will try to work with either forward or backwards slashes, but Windows-style back
    slashes sometimes interfere with functionality, so forward slashes are preferred. */
    log using "assignmentllog", text replace /* Starts a text-type log file called
                "assignment1log" */
```

 HHS 651: Assignment 1
 Stata Solutions - Andrew Proctor

 $* * * * * * * * * * * *$
$* * * * * * * * * * * * * * *$
$t+* * * * * * * * * * * * * * * * * * * ~+~$
********** Data Manipulation
**** Import Dataset CSV File
import delimited using "prgswep1.csv", clear
**** Question 1: Describe Dataset
describe, short
/* Discussion: There are 4, 469 observations (individuals) and 1,328
variables in the dataset. */
**** Question 2: Explanatory Variables
**** 2a. Gender (gender_r)
*** Explore Gender Variable
codebook gender_r // View storage format of variable 'gender_r' //
*** Create a "Female" Indicator Variable
gen female $=$ (gender_r $==2$) if !missing (gender_r)
/* For individuals whose gender is listed in gender r, assigns a
value of 1 for female if gender is equal to 2,1 if $\bar{n} o t . ~ M i s s i n g ~$
values in gender_r would also appear as missing in the female
variable.*/
tabulate female // Displays the freq/percent of each value of "female."
/*
Discussion: The variable "gender_r" represents the gender listed
for each variable. When the CSV file was read into Stata, the variable
was interpreted as a 'numeric' type variable. 50.41% of observations
are male, 49.59% female, and there are no missing observations.
*/
*** Note: Another way to create the female indicator variable would be:
// gen female_alt = 0 if !missing (gender_r)

```
5 3 ~ / / ~ t a . b u l a t e ~ f e m a l \overline { e } < a l t
/ tabulate female alt
**** 2b. Years of Schooling (yrsqual)
*** Explore 'Years of Schooling' Variable
codebook yrsqual // View storage format of variable 'j q04a' // tabulate yrsqual
/* Since 'yrsqual' is a string-variable, only the first
9 values are shown using the codebook command. Using tabulate, we see some of the observations have a missing value "D" - which means
"Don't Know" according to the downloaded codebook. */
***** Format- Years of Schooling Variable
replace yrsqual \(=\) ".d" if yrsqual == "D"
/* Since we need to format the variable as a numeric (quantitive) variable, we need to Stata to interpret the missing values
correctly. Missing values in Stata are denoted my ".", where
letters can follow the "." to indicate what type of missing data we have. So we change "D" to ".d". */
destring(yrsqual), gen(yearsch)
/* Now, we need to Stata to convert the variable to numeric,
by parsing the text (string) values as numbers. */
tabulate yearsch // Check to make sure no more missing values.
tabulate yearsch, missing /* Note: You can see missing values again in tabulate by using option, ", missing" */
summarize yearsch // Produces basic descriptive statistics for 'age' /*
Discussion: The variable "yrsqual" is a derived measure of years
of schooling. The variable was stored in Stata as a "string" type of variable (Why? Because some observations take on the non-numeric "D" value). After converting the variable to numeric, we see the mean is 12.33, with std. dev. of 2.57 , min of 6 and max of 20 . There are 2 missing observations.
*/
**** 2c. Age (age r)
*** Explore Gēnder Variable
codebook age_r // View storage format of variable 'gender_r' //
rename age_r age /* Rename 'age_r' to 'age' (not necessary,
but makes regression more understandable later */
*** Generate 'Potential Experience' Variable
gen potent_exper \(=\max (0\), age -19\() / *\) Generates a 'Potential Experience" variable, equal to age - 19 for
individuals who are at least 19 ,


154
155
156
157
158
159
159
160
161
162
163
164
165
166
167
168
168
169
170
171
172
172
173
174
175
176
177
177
178
179
180
181
drop if \(c \mathrm{~d} 05==3\) | \(\mathrm{c} d 05==4 / /\) Drop if not in labor market or unknown
codebook income_pctile // Check number of missing values of new var.
/*
Discussion: The number missing observations for "monthlyincpr" is 1,236. The number of missing observations for the revised measure is 122 . */
*** Question 4: Regression Analysis
*** 4a: Regress Income Rank on Cognitive Ability, Potential Experience, and Female Gender
reg income_pctile cogn_samp_pctile potent_exper i.female if ///
\(((\) age \(\overline{>}=30) \&(\) age \(<=\overline{6} 5))\)
*
Note: A more concise way to write the condition for age in this interval is to use the command inrange as follows (I will use inrange in the remainder of the solution).

Additionally, an alternative to use any 'if' condition in the regression whatsoever would be the command:
"keep if inrange (age, 30,65 )" but deleting observations outside this range is both unnecessary and would make things more difficult if you want to do further analysis on the full sample. */
reg income_pctile cogn_samp_pctile potent_exper i.female if /// inrange (age, 30, 65)
/*
Discussion:
The coefficient on cogn samp pctile implies that a one percentile increase in cognitive ā̄ility is estimated to shift an individual's percentile of earnings up by . 3391429 (that is, . 3391429 percentage points if percentile is expressed on a 0-1 scale).

The coefficient on potent_exper implies that a one year increase in potential experience is estimated to increase ones' percentile of earnings by . 4132204 percentage points.

The coefficient on female suggests that being female is estimated to increase the percentile of income by 12.38118 percentage points, compared to being a male.

The constant estimate suggests that that the predicted percentile of income for a male (female \(=0\) ) with 0 years of potential experience and in the Oth percentile of cognitive ability is the 37 th percentile. * /
reg income pctile cogn samp pctile c.potent exper\#\#c.potent exper ///
i.female age if in̄range(age, 30, 65)

Discussion:
Age: The age variable is omitted. If you look at the top of the regression output, it notes that age is omitted because of collinearity (Stata automatically detects perfect collinearity and drops one of the collinear variables. Age here is a linear function of potential experience and the constant, since age \(=\) potentexper +19 . This is a violation of the MLR Assumption 3, which is simply "no perfect collinearity."

Square of Potential Experience: The quadratic of experience is negative and significant. This indicates that the benefit of an additional year of experience is diminishing as the years of experience one already has increases. Omission of a relevant quadratic term like this is a common example of the mispecification of functional form that is a violation of MLR Assumption 4 (zero conditional mean) for estimating the true model.

R^2: The \(R^{\wedge} 2\) in the second model is higher than the first (0.1668 as opposed to 0.1551), indicating adding the square of experience increases the total amount of explained variation in income percentile. R^2 will never decrease with the addition of subsequent variables. To see this, note that \(R^{\wedge} 2=1\) - (Sum of Squared Residuals / Total Sum of Squares). Everything except the Sum of Squared Residuals are the same across the two models, and since the second model contains all predictors from the firt model, the sum of squared residuals will be no greater than in the first model.
*/
*** 4c: Compare School Years vs Cognitive Ability
reg income pctile cogn samp pctile potent exper i.female if inrange (age, 30, 65) scalar R2mōdel4a \(=e(r \overline{2} a)-/ /\) Save \(R^{\wedge} 2\) as a scalar. (Also in reg output)
reg income_pctile yearsch potent_exper i.female if inrange (age, 30, 65) scalar R2model4c \(=e\left(r 2 \_a\right) / / \operatorname{Sav} e R^{\wedge} 2\) as a scalar. (Also in reg output)
display R2model4a - R2model4c /* Displays difference in \(\mathrm{R}^{\wedge} 2\) output. Note: For the assigmnent, you could just compare them
from the regression output of each model. */
/*
Discussion
The two models perform nearly identically, with the regression model from \(4(a)\) explaining \(.066432 \%\) more of the variation in income quintiles.

257
258
259 260 261 261 262 263
(Not graded) Potential Problems with Either Model
The two models preview common challenges in applied econometrics we will discuss in subsequent lectures. As you can see from the covariance matrix below, Cov(cogn samp pctile, yearsch) is not equal to zero, and both appear likely to affect incomes, implying omitted variable bias (i.e. a violation of MLR Assumption 4). One response would be to control for both cognitive ability and schooling. But this brings up an issue from Ch. 3: endogeneity. The basic idea is that OLS is biased if you include explanatory variables that are caused by other variables in the model. If cognitive ability increases years of schooling, then years of schooling is endogenous when you both are in the model. Equally, one might imagine that, as individual gains more years of schooling, their cognitive ability increases. If this is true, cognitive ability is also endogenous to schooling (when two variables causally influence each other, this is a particular type of endogenity called simultaneity).
*/
correlate cogn_samp_pctile yearsch, covariance
**** Extra Question for three person groups
**** Question 5(a) Explore Structure of the variable "g_q03h" - which is ** 'Skill use work - Numeracy - How often - Use advanced math or statistics' codebook g_q03h

From looking at 'math use at work' with the codebook command, we see that this variable takes on only 9 unique values, meaning that all values are displayed by Codebook. From this, we can see right away that we have the following 'Missing value' indicators that need to be relabelled: 'D', 'N', 'R', and 'V'.
* /
**** Question \(5(b)\) Suitably reformat \(g\) \(q 03 h\) and provide the mean and **** standard deviation using the original vaue scheme.
*** Recode Missing Values for g q03h
replace g_q03h = ".d" if g_q03h=="D"
replace \(g\) q03h \(=\) ".n" if \(g\) q03h=="N"
replace g_q03h = ".r" if g_q03h=="R"
replace g_q03h = ".v" if g_q03h=="V"
*** Convert \(g\) q03h to a numeric variable by destringing
destring g_q0 \(\overline{3} h\), replace
*** Produce summary statistics for g q03h using original coding of
*** use frequencies
summarize g_q03h

The mean (pre-transformation) of this variable is 1.287818 and the standard deviation is 0.7269503.
*/
**** Question 5(c) - Recode g_q03h so that the values represents number of
*** times each month an individual uses advanced math or statistics at work recode g_q03h \((1=0) \quad(1=0.5) \quad(3=2.5) \quad(4=12) \quad(5=20) / / /\)
, gen(mathuseatwork)
/*
This question highlights a common problem in applied work, which is that survey data often uses an ordinal or interval approach to asking retrospectative information. You as the researcher must then decide how to make that interpretable numerically and justify it.

In assigning values here myself, I assume that individuals work 4 5-day work weeks per month, for a total of 20 work days. So if an individual reports they use math at work "everyday," (5 in the old schema) that equates to 20 days per month.
"Never" (1 in original coding) is straightforwardly represented as 0 times per month.

For less than once a month (1), I code this as
as the midpoint between 0 and 1 , i.e. 0.5 days per month.
For less than once a week but at least once a month (3), this should be less than four (i.e. at most 3) according to my assumptions about a 4 week work month, but greater than 1 . I again use the midpoint of \((1,3)\), that is is 2.5 days per month.

For at least once a week but not every day (4), this again should be less than 20 but less than 4 . So once again taking the midpoint of \((4,20)\), I code this as 12 days per month.
*/
**** Summarize recoded math use at work variable summarize mathuseatwork
/*

> The mean of the variable after transforming it to be more directly interpretable is .7665993 and the standard deviation is 2.663051 .
*/
**** Question \(5(\mathrm{~d})\) - Regressions relating to a math use at work -> cognitive **** ability -> income pathwawy.
*** Question \(5(\mathrm{~d})(i)\) Regression of Cognitive Ability on math use at work
reg cogn_samp_pctile mathuseatwork if (inrange (age, 30, 65) \& (c_d05==1))
*** Question 5(d) (ii)Regression of Earnings Pctile on Cognitive Ability
reg income_pctile cogn_samp_pctile if (inrange (age, 30, 65) \& (c_d05==1))
*** Question 5(d) (iii) Regression of Earnings Pctile on math use at work reg income_pctile mathuseatwork if (inrange (age, 30, 65) \& (c_d05==1))

Discussion:
Regression 5(d) (i) suggests that for each additional day per month that an individual uses advanced math at work, their percentile of cognitive ability increases by 1.723182 , which is statistically significant (p-value < 0.01). It's not immediately required for this question, but you may note that these estimates seem almost implausibly high - as we will discuss further in 5(f).
 cognitive ability has a positive impact on earning, with a
1 percentile increase in positive ability estimated to increase earnings percentile by 0.2753122 , which is statistically significant (p-value < 0.01). If both this relationship and the relationship from \(5(d)(i)\) are indeed correct, then math use at work should have a direct effect on earnings percentile via this pathway.

Regression \(5(d)(i i i)\) estimates that cognitive ability does indeed have an effect earnings percentile - in fact even larger than the estimated effect through the cognitive ability - earnings pathway. An increase in math use of work by once a month is estimated to increase earnings percentile by 1.811131 , which is statistically significant (p-value < 0.01). Again, these results are implausibly high - raising the spector of reverse cauality / endogeneity and foreshadowing \(5(\mathrm{f})\).
* /
**** Question \(5(e)\) - Regressions relating to an erroneous math use at work **** \(->\) years of schooling \(->\) income pathway.
*** Question 5(e) (i) Regression of years of schooling on math use at work
reg yearsch mathuseatwork if (inrange (age, 30, 65) \& (c_d05==1))
*** Question \(5(e)(i)\) Regression of income percentile on years of schooling
reg income_pctile yearsch if (inrange (age, 30, 65) \& (c_d05==1))
/*
Discussion:
Regression \(5(e)(i)\) estimates that math use at work
has a positive, statistically significant effect on years of

409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
423
424
425
427
schooling. Regression 5 (e) (il) then suggests that years
of schooling has a positive, statistically significant effect on earnings percentile.

This would point to a second causal pathway for math use at work to effect earnings, but thinking about regression \(5(e)(i)\) - it doesn't make any sense under our assumptions. If schooling strictly predates math use at work, then math use at work cannot effect schooling. Instead, what we very likely have is reverse causality - an individual's schooling instead affects their math use at work. To see that a coefficient will be different from zero when the true relationship runs in reverse of what is estimated, consider the expression for Beta in terms of the sample correlation and standard deviations:
- For regression of \(y\) on \(x\), the coefficient on \(x\) is: beta_x \(=\operatorname{Corr}(x, y) *\left(S t d D e v \_x / \operatorname{StdDev} y\right)\)
- And for the regression of \(x\) on \(y\), the coefficient on \(y\) is: beta_y \(=\operatorname{Corr}(x, y) *\left(S t d D e v \_y ~ / ~ S t d D e v \_x\right) ~\)

Since the fraction (StdDev_y / StdDev_x) and it's inverse are always strictly positive, then for nonzero Corr(x,y), running regression in the 'wrong' direction (from y to x) will always yield a nonzero coefficient with the same sign as the effect in the right direction (from \(x\) to \(y\) ).

To demonstrate this argument, we run a regression interchanging our dependent and independent variables in 5(e)(i).
* /
*** Demonstrating that regression can't tell us the direction of causality reg mathuseatwork yearsch
**** Question 5(f) - Inference from 5(d) in light of \(5(e)\) /*

\section*{Discussion:}

In 5(e), we see a rather stark case where causality cannot run in the direction estimated by OLS, where math use at work is estimated to increase years of schooling that predates work.

This same concern is likely to extend to the relationship in \(5(\mathrm{~d})\). Individuals with higher cognitive ability are probably more likely to work in jobs with greater use of advanced math. In general, there is likely to be the same issue of simultaneity in the relationship between math use at work and congitive ability.

Generally, this question highlights the difficulty in finding good variables where there is no concern about OVB or reverse cauality.
assignment1.do - Printed on 6/8/2018 11:09:24 AM

460
specifically, extending the logic from 5(d), it seems reasonable to believe that higher paying jobs may often require greater use of mathematics - irrespective of someone's aptitude or qualifications. Hence, rather than higher math use 'causing' higher earnings, higher earnings in these situations would be 'causing' more math use. But since more math use might actually have the effect we originally hypothesized - increasing congitive ability and thereby leading to greater earnings - it's hard to disentangle these two effects.

The potentially problematic nature of the relationship between math use at work and cognitive abiltiy highlights another possible challenge to the regression we have specified in 4 (a): while cognitive ability is likely to influence earnings, earnings may also be affecting the measurement of cognitive ability through higher math use at better paid jobs.

Note: Questions 5 is meant to get at the questions of reverse causality and simultaneity more in-depth. The timing of effects problem in \(5(e)\) is meant especially to highlight that causality can't run in the direction specified. But it is also possible to make a critique centered entirely around more typical ommited variable bias (OVB). Students who don't address reverse causality but instead make a clear and well-reasoned analysis to this question using OVB will still earn full credit.```

