Introduction to Data Analysis in R Module 2: Data Preparation using the Tidyverse

Andrew Proctor

andrew.proctor@phdstudent.hhs.se

January 21, 2019

- 2 Packages in R
- 3 Data Prep Preliminaries
- **4** Data Preparation
- **5** Cleaning data

	Packages
00	0000

Intro

Introduction to Data Analysis in R

Andrew Proctor

Goals for Today

00

- **1** Learn how to use packages in R
- **2** Learn how to import and export data.
- Learn how to perform common data prep functions from the tidyverse collection of packages.
- **4** Learn how to clean and "tidy" data.

0000

Packages in R

Introduction to Data Analysis in F

Role of Packages in R

- Packages in R are similar to user-written commands (think *ssc install*) in Stata.
- But *most* things you do in Stata probably use core Stata commands.
- In R, most of your analysis will probably be done using packages.

CRAN Mirrors What's new? Task Views Search

About R R Homenage Available CRAN Packages By Date

Date	Package	
2018- 02-03	fuzzyforest	Fuzzy Forests
2018- 02-03	<u>tuber</u>	Client for the YouTube API
2018- 02-02	<u>adegenet</u>	Exploratory Analysis of Genetic and Ger
2018- 02-02	<u>antitrust</u>	Tools for Antitrust Practitioners
2018-	arsenal	An Arsenal of 'R' Functions for Large-Sc

Andrew Proctor

Installing and using a package

- To install a package, use the function (preferably in the console) install.packages()
- To begin with, let's install 2 packages:
 - tidyverse: the umbrella package for common data preparation and visualization in R.
 - rio: a package for easy data import, export (saving), and conversion.

install.packages("tidyverse") # Install tidyverse install.packages("rio") # Install rio

Loading a package during analysis

Unlike Stata, in R you need to declare what packages you will be using at the beginning of each R document.

- To do this, use the library() function.
 - require() also works, but its use is discouraged for this purpose.

library("tidyverse")# Install tidyverselibrary("rio")# Install rio

Data Prep Preliminaries

Introduction to Data Analysis in R

Andrew Proctor

Import and export using rio

Previously, importing and exporting data was a mess, with a lot of different functions for different file formats:

• Stata DTA files alone required two functions: read.dta (for Stata 6-12 DTA files), read.dta13 (for Stata 13 and later files), etc.

The rio package simplifies this by reducing all of this to just one function, import()

 Automatically determines the file format of the file and uses the appropriate function from other packages to load in a file.

Data Preparation

Import and export using rio II

PISA_2015 <- import("PISA2015.sas7bdat") PISA_2015[1:5,1:6]

##		CNTRYID	CNT	CNTSCHID	CYC	${\tt NatCen}$	Region
##	1	8	ALB	800001	06MS	00800	800
##	2	8	ALB	800002	06MS	00800	800
##	3	8	ALB	800003	06MS	008000	800
##	4	8	ALB	800004	06MS	008000	800
##	5	8	ALB	800005	06MS	008000	800

export(PISA_2015, "PISA_2015.rds")

Tibbles: an update to the data frame

Last class, we covered data frames—the most basic data object class for data sets with a mix of data class.

Today, we introduce one final data object: the **tibble**!

• The tibble can be thought of as an update to the data frame—and it's the first part of the *tidyverse* package that we'll look at.

Tidy data 00000000

Tibble vs data frames

There are three main benefits to the tibble:

- Displaying data frames:
 - If you display a data frame, it will print as much as much output as allowed by the "max.print" option in the R environment. With large data sets, that's far too much. Tibbles by default print the first 10 rows and as many columns as will fit in the window.
- Partial matching in data frames:
 - When using the **\$** method to reference columns of a data frame, partial names will be matched if the reference isn't exact. This might sound good, but the only real reason for there to be a partial match is a typo, in which case the match might be wrong.

3 Tibbles are required for some functions.

Creating or converting to tibbles

The syntax for creating tibbles exactly parallels the syntax for data frames:

- tibble() creates a tibble from underlying data or vectors.
- as_tibble() coerces an existing data object into a tibble.

PISA_2015 <- as_tibble(PISA_2015); PISA_2015[1:5,1:5]</pre>

##	#	A tibble	e: 5 x	5		
##		CNTRYID	CNT	CNTSCHID	CYC	NatCen
##		<dbl></dbl>	< chr >	<dbl></dbl>	< chr >	<chr></chr>
##	1	8	ALB	800001	06MS	00800
##	2	8	ALB	800002	06MS	00800
##	3	8	ALB	800003	06MS	00800
##	4	8	ALB	800004	06MS	00800
##	5	8	ALB	800005	06MS	008000

Glimpse

Another tidyverse function that's very useful is glimpse(), a function very similar to str().

- Both functions display information about the structure of a data object.
- str() provides more information, such as column (variable) attributes embedded from external data formats, but consequently is much less readable for complex data objects.
- glimpse() provides only column names, classes, and some data values (much more readable)
- I will often use str() when I want more detailed information about data structure, but use glimpse() for quicker glances at the data.

Pipes

Another major convenience enhancement from the tidyverse is pipes, denoted % > %,

- Pipes allow you to combine multiple steps into a single piece of code.
- Specifically, after performing a function in one step, a pipe takes the data generated from the first step and uses it as the data input to a second step.

Pipes Example

Observations: 1.898

barro.lee.data <- import("BL2013_MF1599_v2.1.dta") %>%
 as_tibble() %>% glimpse(width = 50)

Variables: 20 ## \$ BLcode <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1... ## \$ country <chr> "Algeria", "Algeria", "Al... ## \$ year <dbl> 1950, 1955, 1960, 1965, 1... ## \$ sex <chr> "MF", "MF", "MF", "MF", "... ## \$ agefrom <dbl> 15, 15, 15, 15, 15, 15, 15, 1... ## \$ ageto <dbl> 999, 999, 999, 999, 999, ... ## \$ lu <dbl> 80.68459, 81.05096, 82.61... ## \$ lp <dbl> 17.563400, 17.018442, 14.... ## \$ lpc <dbl> 3.745905, 3.464397, 3.069... <dbl> 1.454129, 1.639253, 2.752... ## \$ ls

Intro	Package

Data Preparation

Introduction to Data Analysis in R

Andrew Proctor

Tidyverse and the verbs of data manipulation

A motivating principle behind the creation of the tidyverse was the language of programming should really behave like a language.

Data manipulation in the tidyverse is oriented around a few key "verbs" that perform common types of data manipulation.

- filter() subsets the rows of a data frame based on their values.
- **2** select() selects variables (columns) based on their names.
- mutate() adds new variables that are functions of existing variables.
- summarize() creates a number of summary statistics out of many values.
- **6** arrange() changes the ordering of the rows.

Note: the first argument for each these functions is the data object (so pipe!).

Filtering data

Filtering keeps observations (rows) based on conditions.

• Just like using use subset conditions in the row arguments of a bracketed subset

Using brackets
wages[(wages\$schooling > 10) & (wages\$exper > 10),]

##		wage	schooling	sex	exper
##	2	249.6774	13	female	11

Using filter
wages %>% filter(schooling > 10,exper > 10)

wage schooling sex exper
1 249.6774 13 female 11

Filtering data ctd

Notice a couple of things about the output:

- It doesn't look like we told filter() what data set we would be filtering.
- That's because the data set has already been supplied by the pipe. We could have also written the filter as:

filter(wages, schooling > 10, exper > 10)

##		wage	schooling	sex	exper
##	1	249.6774	13	female	11

We didn't need to use the logical &. Though multiple conditions can still be written in this way with filter(), the default is just to separate them with a comma.

Selecting data

Just like filter is in many ways a more convenient form of writing out bracketed row subset conditions, the verb select() is largely a more convenient method for writing column arguments.

Using brackets
wages_row1[,c("wage","schooling","exper")]

##		wage	schooling	exper
##	1	134.2306	13	8

Using select
wages_row1 %>% select(wage,schooling,exper)

##		wage	schooling	exper
##	1	134.2306	13	8

Tidy data 00000000

An example of dropping a column

One option we have not covered so far in creating subsets is dropping rows or columns.

R has a specific notation for this, easily used with select():

wages_row1 # What wages_row1 looks like:

##		wage	schooling	sex	exper
##	1	134.2306	13	female	8

wages_row1 %>% select(-exper) #drop exper

##		wage	schooling	sex
##	1	134.2306	13	female

An example of dropping a column

wages row1[,-4] # works

Dropping columns (or rows) using the - notation also works with brackets, but only when using the number location of the row or column to be dropped.

##	wage	schooling	sex
## 1	134.2306	13	female

wages_row1[,-"exper"] does not work
wages_row1[,"exper"] <- NULL # works (NULL is R delete)</pre>

Because of select()'s ability to use named arguments when dropping, it is generally easier (except when quotes are required due to improper names).

"Mutating" data

Creating new variables that are functions of existing variables in a data set can be done with mutate().

mutate() takes as its first argument the data set to be used and the equation for the new variable:

wages <- wages %>%	
<pre>mutate(expsq = exper^2)</pre>	
wages # Display wages	

##		wage	schooling	sex	exper	expsq
##	1	134.23058	13	female	8	64
##	2	249.67744	13	female	11	121
##	3	53.56478	10	female	11	121

Summarizing data

Summary statistics can also be easily created using the tidyverse function summarize()

The summarize() functions uses summary statistic functions in R to create a new summary tibble, with syntax largely identical to mutate().

Let's try summarizing with the mean() summary statistic.

wages %>%
 summarize(avg_wage = mean(wage))

avg_wage
1 145.8243

Summary Statistics functions in R

There are a number of summary statistics available in R, which can be used either with the summarize() command or outside of it:

Measures of central tendency and spread:

• mean(), median() sd(), var(), quantile(), IQR()

Position:

• first(), last(), nth(),

Count:

• n(), n_distinct(),

Multiple summary variables

Let's look at an example of using multiple summary variables with a larger 50-observation sample for the wages data set.

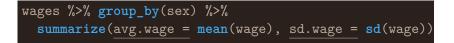
wages %>%
 summarize(avg.wage = mean(wage), sd.wage = sd(wage),
 avg.exper = mean(exper), sd.exper = sd(exper))

##	#	A tibble:	: 1 x 4		
##		avg.wage	sd.wage	avg.exper	sd.exper
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	5942.	17526.	7.47	2.08

Grouping data

Creating summary statistics by group is another routine task. This is accommodated in the tidyverse using the group_by().

• The arguments of group_by(), in addition to the data set, are simply the grouping variables separated by commas.



```
##
   # A tibble: 2 x 3
##
            avg.wage sd.wage
     sex
##
     <fct>
                <dbl>
                        <dbl>
                5473.
##
   1 female
                       18883.
                       16711.
## 2 male
                6410.
```


Arranging (sorting) data

If you want to sort your data by the values of a particular variable, you can easily do so as well with the arrange() function.

wages[1:3,] %>% arrange(exper)

##	#	A tibb	ole: 3 x 4		
##		wage	schooling	sex	exper
##		<dbl></dbl>	<int></int>	<fct></fct>	<int></int>
##	1	175.	12	female	5
##	2	103.	11	male	7
##	3	1411.	14	female	8

Not: arrange() sorts values in ascending order by default. If you want to sort in descending order, wrap the variable name inside **desc()** in the function.

Sampling from data

Creating a sample from a data set in R is made easy by two main function in R: sample_n and sample_frac.

Syntax:

sample_n(data, size, replace = FALSE/TRUE)
sample_frac(data, size = 1, replace = FALSE/TRUE)

A data prep example with fuel economy data

Let's use tidyverse data manipulation verbs to work through a practical data prep problem from start to finish.

For the problem, Let's use fuel economy data again, but with half of the data set. The data comes from the vehicles data set in the fueleconomy package.

install.packages("fueleconomy") # Run only once
library(fueleconomy)

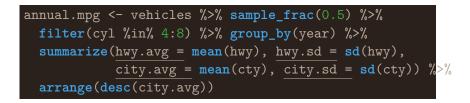
Now let's look at how fuel efficiency has changed over time in the data set. Specifically, let's create descriptive statistics of fuel efficiency by year for "normal" passenger vehicles (4-8 cylinders).

What's in the data set?

glimpse(vehicles[2:12], width=50)

Observations: 33,442 ## Variables: 11 ## \$ make <chr> "AM General", "AM General", "AM... ## \$ model <chr> "DJ Po Vehicle 2WD", "DJ Po Veh... ## \$ year <int> 1984, 1984, 1984, 1984, 1985, 1... ## \$ class <chr> "Special Purpose Vehicle 2WD", ... ## \$ trans <chr> "Automatic 3-spd", "Automatic 3... ## \$ drive <chr> "2-Wheel Drive", "2-Wheel Drive... ## \$ cyl <int> 4, 4, 6, 6, 4, 6, 6, 4, 4, 6, 4... \$ displ <dbl> 2.5, 2.5, 4.2, 4.2, 2.5, 4.2, 3... ## \$ fuel <chr> "Regular", "Regular", "Regular"... ## ## \$ hwy <int> 17, 17, 13, 13, 17, 13, 21, 26,... \$ cty <int> 18, 18, 13, 13, 16, 13, 14, 20,...

Create summary tibble



Note: Here I used **%in%**, which works like **inrange** in Stata. You could alternately write two inequalities to achieve the same thing.

Tidy data 00000000

View summary tibble

Print annual.mpg
annual.mpg

##	# A	tibbl	.e: 32 x	5		
##		year	hwy.avg	hwy.sd	city.avg	city.sd
##		<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	2015	28.6	5.42	20.6	4.78
##	2	2014	27.8	6.44	20.4	5.76
##	3	2013	27.3	6.02	20.0	5.78
##	4	2012	26.3	5.83	19.2	5.21
##	5	2011	25.7	5.36	18.8	4.86
##	6	2010	25.3	4.90	18.4	4.38
##	7	1985	22.8	6.21	17.7	4.70
##	8	2009	24.2	4.54	17.6	3.92
##	9	1986	22.4	5.82	17.5	4.48

Summarizing a data set with the summary() function Although the tidyverse summarize() function is more powerful, often you just a want a quick look at summary statistics for the whole data set.

• You can easily do this with the base R summary() function, which produces summaries not just for data sets, but also for other R output like the results of a regression.

summary(wages)

##	wage	schooling		sex		exper		
##	Min. :	1.69	Min.	: 8	femal	e:15	Min.	: 3
##	1st Qu.:	44.07	1st Qu	.:11	male	:15	1st Qu	1.: 6
##	Median :	160.96	Median	:12			Mediar	1 7
##	Mean :	5941.66	Mean	:12			Mean 3rd Qu	7
##	3rd Qu.:	1519.01	3rd Qu	.:13			3rd Qu	°ono [™] . 1.: 8

Introduction to Data Analysis in F

Packag

Cleaning data

Common data cleaning tasks

There are a few data cleaning tasks that are pervasive in empirical work:

- 1 Ensure columns have useful names
- **2** Recoding variable values
- **3** Addressing missing values

Renaming columns

Renaming columns is easily accommodated with the tidyverse rename() command.

Syntax:

mydataframe <- mydataframe %>%
 rename(<u>NewVarName =</u> OldVarName)

To see rename() in action, let's go back to the barro.lee.data educational data set we imported earlier:

Data Preparation

Renaming columns example

Let's look at columns 1 and 7 through 9:

glimpse(barro.lee.data[,c(1,7:9)], width = 50)

##	Oł	oservati	ions: 3	1,89	98									
##	## Variables: 4													
##	\$	BLcode	<dbl></dbl>	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	
##	\$	lu	<dbl></dbl>	80	. 684	459 ,	81	L.05	5096	5,8	2.6	5111	L5,	
##	\$	lp	<dbl></dbl>	17	. 563	3400), 1	17.0)184	42,	14	1.31	1374	1
##	\$	lpc	<dbl></dbl>	3.7	7459	905,	3.	.464	1397	7,3	.06	5939	91,	

See how these variable names are uninformative?

Renaming columns example ctd

str(barro.lee.data[,c(1,7:9)])

Classes 'tbl_df', 'tbl' and 'data.frame': 1898 obs. (## \$ BLcode: atomic 1 1 1 1 1 1 1 1 1 1 ... ## ..- attr(*, "label")= chr "Country Code" ..- attr(*, "format.stata")= chr "%8.0g" ## ## : atomic 80.7 81.1 82.6 80.9 73.6 ... \$ 111 ## ..- attr(*, "label")= chr "Percentage of No Schooling" ..- attr(*, "format.stata")= chr "%7.2f" ## ## \$ lp : atomic 17.6 17 14.3 14.4 19.2- attr(*, "label")= chr "Percentage of Primary" ## ## ..- attr(*, "format.stata")= chr "%7.2f" ## \$ lpc : atomic 3.75 3.46 3.07 4.01 5.23 ... ## ..- attr(*, "label")= chr "Percentage of Primary" ## ..- attr(*, "format.stata")= chr "%7.2f"

Oata Preparation

Renaming columns example ctd

```
barro.lee.data <- barro.lee.data %>%
rename(countrycode = BLcode,
    perc.noschool = lu,
    perc.primary = lp,
    perc.primary.complete = lpc)
```


Renaming columns example ctd

Now let's look at the variable names again:

glimpse(barro.lee.data[,c(1,7:9)], width = 50)

- ## Observations: 1,898
- ## Variables: 4
- ## \$ countrycode
- ## \$ perc.noschool
- ## \$ perc.primary

- <dbl> 1, 1, 1, 1, 1, 1, ...
 <dbl> 80.68459, 81.05...
 - <dbl> 17.563400, 17.0...
- ## \$ perc.primary.complete <dbl> 3.745905, 3.464...

Recoding variables

Along with renaming variables, recoding variables is another integral part of data wrangling.

wages[1:4,"sex"] # Look at sex column

- ## # A tibble: 4 x 1
- ## sex
- ## <fct>
- ## 1 female
- ## 2 female
- ## 3 male
- ## 4 male

Data Preparation

Recoding variables ctd

```
## # A tibble: 4 x 1
## sex
## <dbl>
## 1 1
## 2 1
## 3 0
## 4 0
```


Missing Values

Another problem characteristic of observational data is missing data. In R, the way to represent missing data is with the value NA.

• You can recode missing value that *should be* NA but are code using a different schema either by using brackets, or the tidyverse na_if() function.

```
## Replace 99-denoted missing data with NA
# bracket method
wages[wages$schooling==99,] <- NA
# tidyverse method
wages$schooling <- wages$schooling %>% na_if(99)
```


Missing values continued

You can check for (correctly-coded) missing-values using the is.na() function.

Missing
wages[is.na(wages\$wage),]

##	#	A tibl	ole: 3 x 4		
##		wage	schooling	sex	exper
##		<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>
##	1	NA	14	1	8
##	2	NA	11	0	8
##	3	NA	10	0	8

Note: R does not naturally support multiple types of missingness like other languages, although it's possible to use the sjmisc package to do this.

Package

Tidy data

Introduction to Data Analysis in F

Andrew Proctor

Tidy data 00000000

Principles of tidy data

Rules for tidy data (from *R* for *Data Science*):

- Each variable must have its own column.
- **2** Each observation must have its own row.
- **3** Each value must have its own cell.

Tidy data tools in the tidyverse

There two main tidyverse verbs for making data tidy are:

gather(): reduces variable values are spread over multiples columns into a single column.

spread(): when multiple variables values are stored in the same columns, moves each variable into it's own column.

Gathering data

If values for a single variable are spread across multiple columns (e.g. income for different years), gather() moves this into single "values" column with a "key" column to identify what the different columns differentiated.

Syntax:

gather(data, key, value, columnstocombine)

Data Preparation

Tidy data 00000000

Gather example

earnings.panel

##	#	A tibble	e: 7 x	3
##		person	y1999	y2000
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	Elsa	10	15
##	2	Mickey	20	28
##	3	Ariel	17	21
##	4	Gaston	19	19
##	5	Jasmine	32	35
##	6	Peter	22	29
##	7	Alice	11	15

Gather example ctd

earnings.panel <- earnings.panel %>%
 gather(key="year", value="wage",y1999:y2000)
earnings.panel

##	# 4	A tibble	: 14 x	3
##		person	year	wage
##		<chr></chr>	<chr></chr>	<dbl></dbl>
##	1	Elsa	y1999	10
##	2	Mickey	y1999	20
##	3	Ariel	y1999	17
##	4	Gaston	y1999	19
##	5	Jasmine	y1999	32
##	6	Peter	y1999	22
##	7	Alice	y1999	11
##	8	Elsa	y2000	15

Spread

Spread tackles the other major problem - that often times (particularly in longitudinal data) many variables are condensed into just a "key" (or indicator) column and a value column.

wages2

##		person	indicator	values
##	1	Elsa	wage	NA
##	2	Mickey	wage	174.932480
##	3	Ariel	wage	102.668810
##	4	Gaston	wage	1.690623
##	5	Jasmine	wage	2.166231
##	6	Peter	wage	1192.371925
##	7	Alice	wage	83.363705
##	8	Elsa	wage	NA
##	9	Mickev	wage	174.932480

Spread ctd

wages2 %>% spread("indicator", "values")

##		person	wage	schooling	exper
##	1	Elsa	NA	14	8
##	2	Mickey	174.932480	12	5
##	3	Ariel	102.668810	11	7
##	4	Gaston	1.690623	11	8
##	5	Jasmine	2.166231	14	10
##	6	Peter	1192.371925	12	8
##	7	Alice	83.363705	11	6
##	8	Elsa	NA	14	8
##	9	Mickey	174.932480	12	5
##	10	Ariel	102.668810	11	7
##	11	Gaston	1.690623	11	8
##	12	Jasmine	2.166231	14	10

