
Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Introduction to Data Analysis in R
Module 3: Programming, joining data, and more

Andrew Proctor

andrew.proctor@phdstudent.hhs.se

January 28, 2019

Introduction to Data Analysis in R Andrew Proctor

mailto:andrew.proctor@phdstudent.hhs.se

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

1 Intro

2 Revisiting basics

3 Iteration

4 Conditionals

5 Functions

6 Joins

7 Manipulating text

8 Web Scraping
Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Intro

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Goals for Module

1 Basics of programming in R—learn how to write and use:
• Iterations (loops and map functions)
• Conditional statements
• Basic functions

2 Learn how to perform different types of dataset joins.
3 Learn how to manipulate strings and use “regular expressions”"
4 Learn basic web scraping

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Revisiting basics

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Assignment Operator
So far, when changing a data object, we have always been a bit
repetitive:

mydataframe <- mydataframe %>%
rename(NewVarName = OldVarName)

Along with the standard pipe (%>%), by loading the magrittr
package, you can also use the so-called “assignment pipe”
(%<>%).

• The above rename with the assignment pipe appears as:

mydataframe %<>% rename(NewVarName = OldVarName)

Introduction to Data Analysis in R Andrew Proctor

https://magrittr.tidyverse.org/

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Lists

Another subtlety glossed over so far are lists.

• As mentioned in module 1, vectors come in two forms: atomic
vectors (with a single data type) and lists (with heterogenous
data types).

• Lists can take as inputs not only single-valued elements, but
also vectors or data frames.

• Creating a list from other objects is done with the list()
function.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

List Creation Example
wages_df; date_df; description

wage schooling sex exper
1 134.23058 13 female 8
2 249.67744 13 female 11
3 53.56478 10 female 11

month year
1 Jan 2017
2 Feb 2018
3 March 2019

[1] "Data on wages and date information."

mylist <- list(wages_df,date_df,description)

Where wages_df and date_df are data frames and description is a
single character element.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

List Creation Example ctd

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Subsetting a list

• To subset a vector/matrix/data frame, one uses single brackets,
eg mydf[,].

• To refer to an object of a list, use double brackets.

mylist[[3]]

[1] "Data on wages and date information."

Note: The function list() does not take transfer the names of the
data frames, so you will need to either subset by position or assign
names to the list objects.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Extracting a list

An easy way of extracting an object from a list is with the
extract2() function from magrittr. This allows you to extract a
given list object by name or position.

wage_data <- mylist %>% extract2(1)
wage_data

wage schooling sex exper
1 134.23058 13 female 8
2 249.67744 13 female 11
3 53.56478 10 female 11

Introduction to Data Analysis in R Andrew Proctor

https://magrittr.tidyverse.org/

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

The unlist function
Instead of creating more complicated data objects, unlist() takes a
list and turns it into a simple (atomic) vector.
Example:

str(simple_list)

List of 4
$: num 1
$: num 2
$: num 3
$: num 4

simple_list %<>% unlist() %>% str()

num [1:4] 1 2 3 4
Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Iteration

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

For loops

For tasks that you want to iterate over multiple data
frames/variables/elements, you may want to think about creating a
loop.

• A loop performs a function/functions multiple times, across
either a list of objects or a set of index values.

Syntax:

for(indexname in range) {
do stuff

}

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

For loop across numeric values

for (i in 1:4){
print(i^2)

}

[1] 1
[1] 4
[1] 9
[1] 16

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

For loop across named elements

You can also loop over elements instead of values.

• In the last module exercises, you had to convert the type of
many variables. Here’s one way you could do that with a loop:

nlsy97 <- import("nlsy97.rds")
factor.vars <- c("personid","year","sex","race",

"region","schooltype")
for (i in factor.vars){
nlsy97[,i] %<>% unlist() %>% as.factor()

}

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

The map() function
For iterations over vectors and dataframes, the map() function is a
great alternative to the for loop.

Map functions take a user-supplied function and iterate it over:

• Elements for a vector
• Objects of a list
• Columns of a data frame

Map functions are much simpler to write than loops and are also
generally a good bit faster.

• Sidenote: Map is a part of the tidyverse collection of packages.
In base R, the apply() family of functions does roughly the
same thing, but map() simplifies and improves this task.

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/purrr/versions/0.2.4/topics/map
https://www.rdocumentation.org/packages/base/versions/3.4.3/topics/apply
https://www.rdocumentation.org/packages/purrr/versions/0.2.4/topics/map

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Using the map() function

Syntax:

map(data, fxn, option1, option2...)

Example:

nlsy97[,factor.vars] %<>% map(as.factor)

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Using class-specific map variants

There are multiple map variants that enforce a given data type on
results. You should use these whenever you want output of a certain
class.

• map_lgl for logical vector
• map_dbl for numeric vector
• map_chr for character vector
• map_df for a data frame

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Example of difference with class-specific map variants
nlsy.sub <- nlsy97 %>% select(parentincome,

motheredyrs, gpa)
nlsy.sub %>% map_dbl(IQR, na.rm=TRUE)

parentincome motheredyrs gpa
55000 2 226

nlsy.sub %>% map(IQR, na.rm=TRUE)

$parentincome
[1] 55000
##
$motheredyrs
[1] 2
##
$gpa
[1] 226

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Using map() with anonymous functions

map() works with not only predefined functions, but also
“anonymous functions”— unnamed functions defined inside of
map().

• Suppose I want the z-standardized values of the variables from
the previous example:

Create Z Transform
ztransform <- map_df(nlsy.sub, function(x)

(x - mean(x, na.rm=TRUE)) / sd(x, na.rm=TRUE)
)

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/purrr/versions/0.2.4/topics/map

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Using map() with anonymous functions ctd
Did my anonymous function work?

Means
map_dbl(ztransform, function(x)

round(mean(x, na.rm=TRUE),10))

parentincome motheredyrs gpa
0 0 0

Standard deviations
map_dbl(ztransform, function(x)

round(sd(x, na.rm=TRUE),10))

parentincome motheredyrs gpa
1 1 1

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Conditionals

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

If statements
“If statements” are also a useful part of programming, either in
conjunction with iteration or seperately.

• An if statement performs operations only if a specified
condition is met.

• An important thing to know, however, is that if statements
evaluate conditions of length one (ie non-vector arguments).

• We will cover a vector equivalent to the if statement shortly.

Syntax

if(condition){
do stuff

}

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Example of an if statement

• In the for loop example, the loop was indexed over only the
columns of indicator codes.

• Equally, the loop could be done over all columns with an
if-statement to change only the indicator codes.

for (j in colnames(nlsy97)){

if(j %in% factor.vars){
nlsy97[,j] %<>% unlist() %>% as.factor()

}
}

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Multiple conditions

You can encompass several conditions using the else if and
catch-all else control statements.

if (condition1) {
do stuff
} else if (condition2) {
do other stuff
} else {
do other other stuff
}

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Vectorized if statements

• As alluded to earlier, if statements can’t test-and-do for
vectors, but only single-valued objects.

• Most of the time, you probably want to use conditional
statements on vectors. The vector equivalent to the if
statement is ifelse()

Syntax:

ifelse(condition, true_statement, false_statement)

The statements returned can be simple values, but they can also be
functions or even further conditions. You can easily nest multiple
ifelses if desired.

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/base/versions/3.4.3/topics/ifelse
https://www.rdocumentation.org/packages/base/versions/3.4.3/topics/ifelse

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

An ifelse example
numbers <- sample(1:30, 7); numbers

[1] 29 11 13 22 27 12 30

ifelse(numbers %% 2 == 0,"even","odd")

[1] "odd" "odd" "odd" "even" "odd" "even" "even"

Note: What if we tried a normal if statement instead?

if(numbers %% 2 == 0){
print("even")} else{

print("odd")}

[1] "odd"
Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Multiple vectorized if statements

A better alternative to multiple nested ifelse statements is the
tidyverse case_when function.

Syntax:

case_when(
condition1 ~ statement1,
condition2 ~ statement2,
condition3 ~ statement3,

)

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/case_when

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

A case_when example
nums_df <- numbers %>% as.tibble() %>%

mutate(interval = case_when(
(numbers > 0 & numbers <= 10) ~ "1-10",
(numbers > 10 & numbers <= 20) ~ "10-20",
(numbers > 20 & numbers <= 30) ~ "20-30"))

nums_df[1:4,]

A tibble: 4 x 2
value interval
<int> <chr>
1 29 20-30
2 11 10-20
3 13 10-20
4 22 20-30

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Functions

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

When you should write a function

If you find yourself performing the same specific steps more than a
couple of times (perhaps with slight variations), then you should
consider writing a function.

A function can serve essentially as a wrapper for a series of steps,
where you define generalized inputs/arguments.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Writing a function

Ingredients:

• Function name
• Arguments
• Function body

Syntax:

function_name <- function(arg1, arg2, ...){
do stuff

}

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Function example
Let’s turn the calculation of even or odd that was completed earlier
into a function:

Make odd function
odd <- function(obj){

ifelse(obj %% 2 == 0,"even","odd")
}

Notice that obj here is a descriptive placeholder name for the data
object to be supplied as an argument for the function.

odd(numbers)

[1] "odd" "odd" "odd" "even" "odd" "even" "even"

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

RStudio’s “Extract Function”

A useful way of writing simple functions when you’ve already written
the code for a specific instance is to use RStudio’s Extract Function
option, which is available from the code menu.

• Extract function will take the code chunk and treat any data
objects referenced but not created within the chunk as function
arguments.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Joins

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Merging data
Shifting gears from programming. . .

Another staple task in applied work is combining data from multiple
data sets. The tidyverse set of packages includes several useful
types of merges (or “joins”):

• left_join() Appends columns from dataset B to dataset A,
keeping all observations in dataset A.

• inner_join() Appends columns together, keeping only
observations that appear in both dataset A and B.

• semi_join() Keeps only columns of dataset A for observations
that appear in both dataset A and B.

• anti_join() Keeps only columns of dataset A for
observations that do not appear in both dataset A and B.

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Joining using keys

The starting point for any merge is to enumerate the column or
columns that uniquely identify observations in the dataset.

• For cross-sectional data, this might be a personal identifier or
(for aggregate data) something like municipality, state, country,
etc.

• For panel data, this will typically be both the personal/group
identifier and a timing variable, for example Sweden in 2015 in
a cross-country analysis.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Mismatched key names across datasets

Sometimes the names of the key variables are different across
datasets.

• You could of course rename the key variables to be consistent.
• But mismatched key names are easily handled by the tidyverse

join functions.

Syntax:

join_function(x, y, by = c("x_name" = "y_name"))

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

left_join

The left_join() is the most frequent type of join, corresponding to a
standard merge in Stata.

• left_join simply appends additional variables from a second
dataset to a main dataset, keeping all the observations (rows)
of the first dataset.

Syntax:

left_join(x, y, by = "key")

If the key is muliple columns, use c() to list them.

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

left_join example
Look at the datasets
earnings

person_id wage
1 001 150
2 002 90
3 003 270

educ

person_id schooling
1 001 12
2 003 8
3 004 16

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

left_join example ctd
Combine data
combined_data <- left_join(earnings, educ,

by="person_id")

Warning: Column `person_id` joining factors with different levels, coercing
to character vector

Print data
combined_data

person_id wage schooling
1 001 150 12
2 002 90 NA
3 003 270 8

Notice that schooling is equal to NA for person ‘002’ because
that person does not appear in the educ dataset.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

inner_join

If you want to combine the variables of two data sets, but only keep
the observations present in both datasets, use the inner_join()
function.

combined_data <- inner_join(earnings, educ,
by="person_id")

combined_data

person_id wage schooling
1 001 150 12
2 003 270 8

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

semi_join

To keep using only the variables in the first dataset, but where
observations in the first dataset are matched in the second dataset,
use semi_join().

• semi_join is an example of a filtering join. Filtering joins don’t
add new columns, but instead just filter observations for
matches in a second dataset.

• left_join and inner_join are instead known as mutating joins,
because new variables are added to the dataset.

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

semi_join example

filtered_data <- semi_join(earnings, educ,
by="person_id")

filtered_data

person_id wage
1 001 150
2 003 270

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

anti_join

Another filtering join is anti_join(), which filters for observations
that are not matched in a second dataset.

filtered_data <- anti_join(earnings, educ,
by="person_id")

filtered_data

person_id wage
1 002 90

There are still other join types, which you can read about here.

Introduction to Data Analysis in R Andrew Proctor

https://www.rdocumentation.org/packages/dplyr/versions/0.7.3/topics/join
http://dplyr.tidyverse.org/reference/join.html

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Appending data

Finally, instead of joining different datasets for the same individuals,
sometimes you want to join together files that are for different
individuals within the same dataset.

• When join data where the variables for each dataset are the
same, but the observations are different, this is called
appending data.

The function for appending data in the tidyverse is:

bind_rows(list(dataframe1,dataframe2,...))

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Manipulating text

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Concatenating strings

The last type of data preparation that we will cover in this course is
manipulating string data.

• The simplest string manipulation may be concatenating (ie
combining) strings.

• A great function for combining string in R is the glue()
function, part of the Tiydverse glue package.

• The glue function lets you reference variable values inside of
text strings by writing the variable in curly brackets {} inside
of the string.

Introduction to Data Analysis in R Andrew Proctor

https://glue.tidyverse.org/reference/glue.html

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Glue Example

date_df %<>% mutate(
say.month = glue("The month is {month}"),
mo.yr = glue("{month} {year}")

)
date_df

month year say.month mo.yr
1 Jan 2017 The month is Jan Jan 2017
2 Feb 2018 The month is Feb Feb 2018
3 March 2019 The month is March March 2019

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Glue Example 2

numbers <- c(1,2,3)
for (i in numbers){

print(glue("The magic number is {i}"))
}

The magic number is 1
The magic number is 2
The magic number is 3

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Extracting and replacing parts of a string

Other common string manipulating tasks include extracting or
replacing parts of a string.

• These tasks can be done via the str_extract() and
str_replace() in the Tidyverse stringr package.

• We saw examples of these two functions in the last seminar
exercise:

Introduction to Data Analysis in R Andrew Proctor

https://stringr.tidyverse.org/index.html

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Extracting and replacing parts of a string

The syntax for each function is:

str_extract(string_object, "pattern_to_match")
str_replace(string_object, "pattern_to_match",

"replacement_text")

By default, both function operate on the first match of the specified
pattern. To operate on all matchs, add “_all" to the function name,
as in:

str_extract_all(string_object, "pattern_to_match")

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Extract and replace example

In the last seminar, we created a “year” column from years indicated
in the “variable” column text via the expression:

nlsy97$year <- str_extract(nlsy97$variable, "[0-9]+")

After creating the “year” column, we then removed the year values
from the values of the “variable” column by replacing these numbers
with an empty string.

nlsy97$variable <- str_replace(nlsy97$variable,
"[0-9]+","")

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Trimming a string

When working with formatted text, a third common task is to
remove extra spaces before or after the string text.

• This is done with the str_trim() function. The syntax is:

str_trim(string, side = "left"/"right"/"both")

Note, when printing a string, any formatting characters are shown.
To view how the string looks formatted, use the ViewLines()
function.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Using regular expressions with strings

Often we want to modify strings based on a pattern rather than an
exact expression, as seen with the str_extract() and
str_replace() examples.

• Patterns are specified in R (as in many other languages) using
a syntax known as “regular expressions” or regex.

• Today, we will very briefly introduce some regular expressions.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Common Expressions

• To match “one of” several elements, refer to them in square
brackets, eg: [abc]

• To match one of a range of values, use a hyphen to indicate
the range: e.g. [a-z],[0-9]

• To match either of a couple of patterns/expressions, use the
OR operator, eg: “2017|2018”

• There are also abbreviation for one of specific types of
characters

• eg: [:digit:] for numbers, [:alpha:] for letters, [:punct:] for
punctuation, and . for every character.

• See the RStudio cheat sheet on stringr for more examples
(and in general, as a brilliant reference to regex)

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

How many times to match?

Aside from specifiying the characters to match, such as “[0-9]”,
another important component of regular expressions is how many
time should the characters appear.

• “[0-9]” will match any part of a string composed of exactly 1
number.

• “[0-9]+” will match any part of a string composed of 1 or more
numbers.

• “[0-9]{4}” will match any part of a string composed of exactly
4 numbers.

• “[0-9]*" will match any part of a string composed of zero or
more numbers.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Examples with repetition
Suppose we want to extract year data that is mixed in with other
data as well.

messy_var <- c(1,1987,2006,2010,307,2018)
str_extract(messy_var, "[0-9]")

[1] "1" "1" "2" "2" "3" "2"

str_extract(messy_var, "[0-9]+")

[1] "1" "1987" "2006" "2010" "307" "2018"

str_extract(messy_var, "[0-9]{4}")

[1] NA "1987" "2006" "2010" NA "2018"
Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Escaping special characters
Often, special characters can cause problems when working with
strings. For example, trying to add a quote can result in R thinking
you are trying to close the string.

For most characters, you can “escape” (cause R to read as part of
the string) special characters by prepending them with a backslash.

Example:

quote <- "\"Without data, you're just another person
with an opinion.\" - W. Edwards Deming."
writeLines(quote)

"Without data, you're just another person
with an opinion." - W. Edwards Deming.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Matching strings that precede or follow specific patterns

To match part of a string that occurs before or after a specific other
pattern, you can also specify “lookarounds”, the pattern the match
should precede or follow:

To match a string pattern x, preceded or followed by y:

• y precedes x: “(?<=y)x”
• y follows x: “x(?=y)”

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Look around example

price_info <-c("The price is 5 dollars")
str_extract(price_info, "(?<=(The price is)).+")

[1] "5 dollars"

str_extract(price_info, ".+(?=(dollars))")

[1] "The price is 5"

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Web Scraping

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Web scraping with Rvest

“Scraping” data from the web - that is, automating the retrieval of
data displayed online (other than through API) is an increasingly
common data analysis task.

• Today, we will briefly explore very rudimentary web scraping,
using the rvest package.

• The specific focus today is only on scraping data structued as a
table on a webpage. The basic method highlighted will work
much of the time - but does not work for every table.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Using rvest to scrape a table
• The starting point for scraping a web table with rvest is the
read_html() function, where the URL to the page with data
should go.

• After reading the webpage, the table should be parsed. For
many tables, the read_html can be piped directly into the
html_table() function.

• If this works, the data should then be converted from a list into
a dataframe/tibble.

• If html_table() does not work, a more robust option is to
first pipe read_html into html_nodes(xpath = “//table”)
and then into html_table(fill=TRUE)

• html_nodes(xpath = “//table”) looks for all HTML
objects coded as a table, hence tends to produces lists with
several objects.

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Web scraping example

tech_stock_names <- c("MSFT","AMZN","GOOGL","AAPL",
"FB","INTC","CSCO")

tech_stocks <- list()
for(j in 1:length(tech_stock_names)){

tech_stocks[[j]] <-read_html(
glue("https://finance.yahoo.com/quote/{tech_stock_

names[j]}/history")) %>%
html_table() %>% as.data.frame() %>%

mutate(stock = tech_stock_names[j])
}

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Web scraping example ctd

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Web scraping example

tech_stocks %<>% bind_rows()
tech_stocks[1:5,c(1,6:8)]

Date Adj.Close.. Volume stock
1 Feb 05, 2019 106.94 14,365,730 MSFT
2 Feb 01, 2019 102.78 35,264,100 MSFT
3 Jan 31, 2019 104.43 55,636,400 MSFT
4 Jan 30, 2019 106.38 49,471,900 MSFT
5 Jan 29, 2019 102.94 31,490,500 MSFT

Introduction to Data Analysis in R Andrew Proctor

Intro Revisiting basics Iteration Conditionals Functions Joins Manipulating text Web Scraping

Another webscraping example

gini_list <-read_html(
"http://wdi.worldbank.org/table/1.3") %>%
html_nodes(xpath ="//table") %>%
html_table(fill=TRUE)

gini_data <- gini_list %>% extract2(3) %>%
as.data.frame() %>% select(1:3)

gini_data[1:3,]

X1 X2 X3
1 Afghanistan
2 Albania 2012 29.0
3 Algeria 2011 27.6

Introduction to Data Analysis in R Andrew Proctor

	Intro
	Revisiting basics
	Iteration
	Conditionals
	Functions
	Joins
	Manipulating text
	Web Scraping

