
Intro RMarkdown documents RStudio Projects Version Control

Introduction to Data Analysis in R
Module 4: Dynamic documents and project management

Andrew Proctor

andrew.proctor@phdstudent.hhs.se

February 11, 2019

Introduction to Data Analysis in R Andrew Proctor

mailto:andrew.proctor@phdstudent.hhs.se

Intro RMarkdown documents RStudio Projects Version Control

1 Intro

2 RMarkdown documents

3 RStudio Projects

4 Version Control

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Intro

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Goals for Today

• Learn how to create dynamic R documents in a variety of
formats using knitr and RMarkdown

• Learn how to how manage the project structure using RStudio
projects.

• Learn how to perform local and online online version control
using Git and GitHub.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

RMarkdown documents

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Reproducible R Reports

• So far, we have been working purely with basic “R Script” files,
which are very similar to Stata do-files.

• But thanks largely to the knitr package, you can easily create
reports that interweaves text and R code in a neatly structured
manner.

• Output can be structured as PDF documents, HTML
webpages, Word documents, or various presentation formats
including Beamer (LaTex) presentations.

• The course website, lecture slides, and exercise instructions
have all been generated in R.

Introduction to Data Analysis in R Andrew Proctor

https://yihui.name/knitr/

Intro RMarkdown documents RStudio Projects Version Control

Getting started

• Reports of different file formats are generated using the knitr
package.

• Before installing knitr, make sure sure that you have a Latex
distribution installed.

• Then install the knitr package and initialize it in the usual
manner.

Run only once (ie in the console)
install.packages("knitr")

Initialize library
library("knitr")

Introduction to Data Analysis in R Andrew Proctor

https://yihui.name/knitr/
https://yihui.name/knitr/

Intro RMarkdown documents RStudio Projects Version Control

Knitr and RMarkdown
Knitr allows for the creation of documents structured using two
different typesetting languages:

• LaTex with the .RNW file
• Markdown (specifically RMarkdown), which was originally
created as a simple language for structuring HTML markup.

For this course, we will focus on the RMarkdown format, which
has become the dominant method for “knitting” document because
of it’s lightweight and flexibility.

• More information about how to generate R reports using the
Latex format can be found at
https://rpubs.com/YaRrr/SweaveIntro.

Introduction to Data Analysis in R Andrew Proctor

https://rpubs.com/YaRrr/SweaveIntro

Intro RMarkdown documents RStudio Projects Version Control

Creating an RMarkdown document
• After installing knitr, to create an RMarkdown document, go to
File—New File—R Markdown.

• A popup shows up to ask enter the document Title and Author,
as well as what type of document you want to create.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Writing and Code in RMarkdown
In RMarkdown, expository writing and code “chunks” are
differentiated in writing code in specific code chunks.

```{r}
# Here is an example of a code chunk
2 +2
```

When you create the document, that statement gets evaluated as:

Here is an example of a code chunk
2 +2

[1] 4

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Inline Chunks

You can also include inline code by using initializing with a backtick
and the letter r (no space between), writing the code, then closing
the chunk with another backtick.

• For example: `r 2+2`

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Knitting a document

To generate a document in the desired output format from a
RMarkdown document, you need to “Knit” the document, which
appears as a clickable icon on the menu atop the script pane.

You do not need to Knit a document after every change, however.
You can just as easily run the code chunks. There are specific
specific buttons to run either the current chunk or all of the chunks
above a given chunk.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Writing outside of code chunks
Anything not written inside of these bacticked sections is interpret
as normal writing.

RMarkdown makes styling your writing particularly easy. Some
common formatting options include:

• Headers: Headers are defined using hashes (#)
• A single # indicates a top level heading (and bigger font), while

each additional hash indicates a smaller heading size
• So while # is the largest heading size, #### is a small

heading

• Bold: To bold text, wrap it in two asterisks: **Bold
Statement**

• Italics: To italicize text, wrap in a single asterisk:
Italics Statement

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Lists and Latex Input

• Latex input: Most LaTex commands (except for generally
longer multi-line structures) can be included in RMarkdown
documents just as you’d write them in Tex document.

• Lists/Bullet Points: Like the bullet points here, you will often
want to structure output using lists.

• To create a bulleted list, start each bulleted line with a dash (-).
• Make sure to leave an empty line between the start of the list

and any other text.
• To make an indent “sub-list”, start the sub-list with a plus sign

(+) and use tab to indent the line twice for each of the sub-list
items.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Ordered Lists
• Ordered lists use the same indent rules as unordered lists, but
with no dashes or plus signs.

• You can also generally uses automatic numbering by repeating
the initial letter or number (e.g.)

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Seperating Lines in RMarkdown

• Something you might wonder is how to obey the RStudio
80-character margins while allowing your text to wrap normally
in the generated documents.

• The answer lies in how new lines are treated in RMarkdown
documents.

• If the line ends with one space or less, a new line in RMarkdown
will not be treated as a new line in the documents generated.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Code chunk options
There are several output options you can specify for how R code
and the code output are expressed in reports. These options are
expressed as options in the {r} declaration at the top of the chunk.

• echo=FALSE: do not show the R code itself (but potentially
the code output depending on other chunk options).

• include=FALSE: do not show the R code or the output in the
document.

• eval=FALSE: do not actually execute the code inside the
chunk, only display it.

• results=hide: run the code but do not show the results
output.

• warning=FALSE / message=FALSE: do not show
warnings or messages associated with the R code.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Output options

When a RMarkdown document is generated in a given output
format, there are several common things you can do to customize
the appearance of the document.

To add options to your document, indent the name of the output
type to an indented new line and a colon to it. Then indent under
the output type and add the desired options.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Common output options
Here are a few common options:

• table of contents: to include a table of contents in your
document, use the toc: yes option.

• To change the way data frame output is printed, use the
df_print: option. Good options are kable or tibble.

• To add code highlighting for R chunks, use the highlight:
option.

• Options include: default, tango, pygments, kate, monochrome,
espresso, zenburn, haddock, and textmate.

• You can also specify output themes for html documents and
beamer presentations. For html documents, possible themes
are listed here while beamer themes are typically supplied
by .sty files in your project folder.

Introduction to Data Analysis in R Andrew Proctor

https://rmarkdown.rstudio.com/html_document_format.html#appearance_and_style

Intro RMarkdown documents RStudio Projects Version Control

Working Directories in RMarkdown

In RMarkdown documents, the working directory is automatically
set to the folder in which the RMarkdown document is saved.

• From there, you can use relative file paths. If data etc is in the
root of the project folder, then just refer to the file name
directly.

• If data is in a subfolder, eg data, use a relative path like:

import(./data/mydata.rds)

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

R Notebooks

Aside from the standard RMarkdown documents that we’ve covered
so far, another format worth mentioning is the R Notebook format.

• R Notebooks essentially adapt html RMarkdown documents to
be even more similar to something like Jupyter Notebooks.

• With R Notebooks, you can Preview documents without
knitting them over again.

• The document also generally has the Notebook-style
code-output-code layout.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

RStudio Projects

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Projects Intro

In addition to using RMarkdown documents to make your scripts
and reports more compelling, another process upgrade is using
RStudio Projects.

Projects are useful because they:

• Define a project root folder
• Save a RStudio environment that is unique to each project
• Allow for easy version control

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Working folder benefits of a Project

• A project root folder is not only preferable to the need to use
setwd(), but also to the default working directory used in
RMarkdown documents outside of R Projects. Why?

• Because for substantial research projects, you likely will have a
lot of files that you split into different subfolders, one of which
is probably something like code.

• In this case, you’d need to use somewhat convoluted relative file
paths to indicate that the paths should be from the parent
folder of code.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Using RStudio Projects

To create a RStudio Project, go to File – New Project. From
there, you can choose whether to create a new directory, use an
existing directory, or use a Version Control repository.

• In practice, I’d suggest you use either a New Directory or
Version Control depending on whether or not you want to
sync your scripts to GitHub.

• We’ll go over version control shortly.

Once you have created a Project, you can either open it from the
File Menu or by opening the .RProj file in the project directory
root.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Project workflow structure

Sample Folder Structure:
• code/

• data_prep/
• analysis/

• data/
• raw_data/
• derived_data/

• docs/
• report/
• presentation/

• images/
• results/

• tables/
• figures/

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Some workflow management packages:

The following packages can help with setting up workflow, with
predefined structures and integration of other useful tools, such as
caching, versioning, and logging.

• rrtools
• workflowr
• ProjectTemplate
• represtools

Introduction to Data Analysis in R Andrew Proctor

https://github.com/benmarwick/rrtools
https://jdblischak.github.io/workflowr/index.html
http://projecttemplate.net/
http://pirategrunt.com/represtools/

Intro RMarkdown documents RStudio Projects Version Control

Reproducibility and the R environment

• A concern with any type of analysis project is that over time,
the analysis environment can change – making it harder to
reproduce results.

• The most common concern is that packages may change or
become obsolete

• But also the program itself (R) can change, the OS can change,
etc. All potentially leading to the inability to reproduce results.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Managing the R environment

• A solution to evolving package ecosystems built-in to R
Projects is packrat.

• packrat can create a package library specific to the individual
project.

• A more robust reproducibility solution is with Docker, which
creates “containers” in which not only packages are fixed, but
also the software (and even the virtual machine).

Introduction to Data Analysis in R Andrew Proctor

https://rstudio.github.io/packrat/
https://ropenscilabs.github.io/r-docker-tutorial/

Intro RMarkdown documents RStudio Projects Version Control

Version Control

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

What is version control?

Version control is a means to track changes made to files

Version control allows you to:

• See a history of every change made to files
• Annotate changes
• Allow you to revert files to previous versions

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Local Version Control with Git

The most popular software for managing version control is Git.

• There’s a good chance you’ve at least seen GitHub before,
which is an online remote location for storing version control
repositories.

• The Git software, however, is equally adept at managing
version control on your local computer.

Once Git is installed (and recognized in RStudio), you can use
Projects to perform local version control.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Local Version Control with Git ctd

In File – New Project – New Directory, once you have Git
installed there is a checkbox that can be selected to enable to
“Create a Git repository”.

• A repository is a location that Git uses to track the changes of
a file or folder, here the project folder. The Git repository is
stored as a folder named “.git” in the project root.

• Creating a Project in this manner with a Git repository will
enable version control on your local computer.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Remote version control with GitHub

• In addition to local version control, you can also back up the
history of file changes to online repositories using GitHub.

• GitHub connects to the local Git repository on your computer,
“pushing” and “pulling” changes between the local and remote
repositories.

• This also allows for easy collaboration on coding projects, as
multiple person can sync to files by connecting to the remote
repository.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Using GitHub for remote version control

With a GitHub account, you can create a new online repository by
clicking the “+” icon in the top right of a GitHub page, and then
clicking “New Repository”.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Setting up a new repository
From there, you need to:

• Supply GitHub with a repository name (think folder name)
• Choose whether or not the repository should be public or

private (ie whether or not you want other people to be able to
visit your GitHub page and view the repository).

• If you have a GitHub education account, then Private
repositories are free. Otherwiwse, you’d need a paid GitHub
subscription.

• Click on the checkbox to enable “Initialize this repository with
a README”.

• Each repository is required to have a readme file, which you may
want to comment but is not strictly necessary. Commenting
uses Markdown, which is essentially the same as RMarkdown!

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Using a Remote Repository with GitHub

Once you’ve created an online repository, Projects once again
allows you to easily connect RStudio with the repository.

• To setup a project for use with GitHub, create a New Project
and select Version Control instead of New Directory.

• From there, simply choose “Git” and then copy the url of the
repository from GitHub into RStudio.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Tracking changes with Git
Once you have a Project setup with version control, the first key
component of tracking changes is “Committing” them to the
repository

• A “commit” is an update that saves revisions of files into the
Git repository.

You can commit changes by going to the “Git” tab in the upper
right-hand side of the RStudio IDE.

• In the Git tab, any files that have changed since the last
commit are listed. From there, click on the files you’d like to
commit and click on the commit button.

• A Commit box appears which shows you the changes since
the last revision and asks for a commit message, where you
should very briefly describe the changes.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Tracking changes with Git

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Syncing changes with a remote repository

• If you are just tracking changes with a local repository, commit
is sufficient to manage version control.

• But if you are using version control with an remote (ie online)
repository, you will two other steps to make sure changes are
sync between the local repository and online.

• To send changes made locally to the online repository, after
comitting changes click on “Push.”

• To sync changes from the online repository to local files, click
on “Pull”.

Introduction to Data Analysis in R Andrew Proctor

Intro RMarkdown documents RStudio Projects Version Control

Viewing previous commits

• To view previous versions of the files (along with annotations
supplied with the commit message), click on the clock icon in
the Git pane.

• From there, you can see not only a “difference” view of the file
changes, but you can also open the document exactly how it
was written in a previous commit.

• From there, if you wanted to revert changes, you could
explicitly revert the file with Git, or simply copy over the file
with code from the previous commit — my preferred method of
reverting changes.

Introduction to Data Analysis in R Andrew Proctor

	Intro
	RMarkdown documents
	RStudio Projects
	Version Control

